tibble()
constructs a data frame. It is used like base::data.frame()
, but
with a couple notable differences:
The returned data frame has the class
tbl_df
, in addition todata.frame
. This allows so-called "tibbles" to exhibit some special behaviour, such as enhanced printing. Tibbles are fully described intbl_df
.tibble()
is much lazier thanbase::data.frame()
in terms of transforming the user's input.Character vectors are not coerced to factor.
List-columns are expressly anticipated and do not require special tricks.
Column names are not modified.
Inner names in columns are left unchanged.
tibble()
builds columns sequentially. When defining a column, you can refer to columns created earlier in the call. Only columns of length one are recycled.If a column evaluates to a data frame or tibble, it is nested or spliced. If it evaluates to a matrix or a array, it remains a matrix or array, respectively. See examples.
tibble_row()
constructs a data frame that is guaranteed to occupy one row.
Vector columns are required to have size one, non-vector columns are wrapped
in a list.
Arguments
- ...
<
dynamic-dots
> A set of name-value pairs. These arguments are processed withrlang::quos()
and support unquote viarlang::!!
and unquote-splice viarlang::!!!
. Use:=
to create columns that start with a dot.Arguments are evaluated sequentially. You can refer to previously created elements directly or using the rlang::.data pronoun. To refer explicitly to objects in the calling environment, use
rlang::!!
or rlang::.env, e.g.!!.data
or.env$.data
for the special case of an object named.data
.- .rows
The number of rows, useful to create a 0-column tibble or just as an additional check.
- .name_repair
Treatment of problematic column names:
"minimal"
: No name repair or checks, beyond basic existence,"unique"
: Make sure names are unique and not empty,"check_unique"
: (default value), no name repair, but check they areunique
,"universal"
: Make the namesunique
and syntactica function: apply custom name repair (e.g.,
.name_repair = make.names
for names in the style of base R).A purrr-style anonymous function, see
rlang::as_function()
This argument is passed on as
repair
tovctrs::vec_as_names()
. See there for more details on these terms and the strategies used to enforce them.
Value
A tibble, which is a colloquial term for an object of class
tbl_df
. A tbl_df
object is also a data
frame, i.e. it has class data.frame
.
See also
Use as_tibble()
to turn an existing object into a tibble. Use
enframe()
to convert a named vector into a tibble. Name repair is
detailed in vctrs::vec_as_names()
.
See rlang::quasiquotation for more details on tidy dots semantics,
i.e. exactly how the ...
argument is processed.
Examples
# Unnamed arguments are named with their expression:
a <- 1:5
tibble(a, a * 2)
#> # A tibble: 5 × 2
#> a `a * 2`
#> <int> <dbl>
#> 1 1 2
#> 2 2 4
#> 3 3 6
#> 4 4 8
#> 5 5 10
# Scalars (vectors of length one) are recycled:
tibble(a, b = a * 2, c = 1)
#> # A tibble: 5 × 3
#> a b c
#> <int> <dbl> <dbl>
#> 1 1 2 1
#> 2 2 4 1
#> 3 3 6 1
#> 4 4 8 1
#> 5 5 10 1
# Columns are available in subsequent expressions:
tibble(x = runif(10), y = x * 2)
#> # A tibble: 10 × 2
#> x y
#> <dbl> <dbl>
#> 1 0.900 1.80
#> 2 0.617 1.23
#> 3 0.704 1.41
#> 4 0.546 1.09
#> 5 0.807 1.61
#> 6 0.184 0.368
#> 7 0.725 1.45
#> 8 0.623 1.25
#> 9 0.0574 0.115
#> 10 0.636 1.27
# tibble() never coerces its inputs,
str(tibble(letters))
#> tibble [26 × 1] (S3: tbl_df/tbl/data.frame)
#> $ letters: chr [1:26] "a" "b" "c" "d" ...
str(tibble(x = list(diag(1), diag(2))))
#> tibble [2 × 1] (S3: tbl_df/tbl/data.frame)
#> $ x:List of 2
#> ..$ : num [1, 1] 1
#> ..$ : num [1:2, 1:2] 1 0 0 1
# or munges column names (unless requested),
tibble(`a + b` = 1:5)
#> # A tibble: 5 × 1
#> `a + b`
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
# but it forces you to take charge of names, if they need repair:
try(tibble(x = 1, x = 2))
#> Error in tibble(x = 1, x = 2) :
#> Column name `x` must not be duplicated.
#> Use `.name_repair` to specify repair.
#> Caused by error in `repaired_names()` at tibble/R/names.R:14:3:
#> ! Names must be unique.
#> ✖ These names are duplicated:
#> * "x" at locations 1 and 2.
tibble(x = 1, x = 2, .name_repair = "unique")
#> New names:
#> • `x` -> `x...1`
#> • `x` -> `x...2`
#> # A tibble: 1 × 2
#> x...1 x...2
#> <dbl> <dbl>
#> 1 1 2
tibble(x = 1, x = 2, .name_repair = "minimal")
#> # A tibble: 1 × 2
#> x x
#> <dbl> <dbl>
#> 1 1 2
## By default, non-syntactic names are allowed,
df <- tibble(`a 1` = 1, `a 2` = 2)
## because you can still index by name:
df[["a 1"]]
#> [1] 1
df$`a 1`
#> [1] 1
with(df, `a 1`)
#> [1] 1
## Syntactic names are easier to work with, though, and you can request them:
df <- tibble(`a 1` = 1, `a 2` = 2, .name_repair = "universal")
#> New names:
#> • `a 1` -> `a.1`
#> • `a 2` -> `a.2`
df$a.1
#> [1] 1
## You can specify your own name repair function:
tibble(x = 1, x = 2, .name_repair = make.unique)
#> # A tibble: 1 × 2
#> x x.1
#> <dbl> <dbl>
#> 1 1 2
fix_names <- function(x) gsub("\\s+", "_", x)
tibble(`year 1` = 1, `year 2` = 2, .name_repair = fix_names)
#> # A tibble: 1 × 2
#> year_1 year_2
#> <dbl> <dbl>
#> 1 1 2
## purrr-style anonymous functions and constants
## are also supported
tibble(x = 1, x = 2, .name_repair = ~ make.names(., unique = TRUE))
#> # A tibble: 1 × 2
#> x x.1
#> <dbl> <dbl>
#> 1 1 2
tibble(x = 1, x = 2, .name_repair = ~ c("a", "b"))
#> # A tibble: 1 × 2
#> a b
#> <dbl> <dbl>
#> 1 1 2
# Tibbles can contain columns that are tibbles or matrices
# if the number of rows is compatible. Unnamed tibbled are
# spliced, i.e. the inner columns are inserted into the
# tibble under construction.
tibble(
a = 1:3,
tibble(
b = 4:6,
c = 7:9
),
d = tibble(
e = tibble(
f = b
)
)
)
#> # A tibble: 3 × 4
#> a b c d$e$f
#> <int> <int> <int> <int>
#> 1 1 4 7 4
#> 2 2 5 8 5
#> 3 3 6 9 6
tibble(
a = 1:3,
b = diag(3),
c = cor(trees),
d = Titanic[1:3, , , ]
)
#> # A tibble: 3 × 4
#> a b[,1] [,2] [,3] c[,"Girth"] [,"Height"] [,"Volume"] d
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <table[,2,2>
#> 1 1 1 0 0 1 0.519 0.967 0 …
#> 2 2 0 1 0 0.519 1 0.598 0 …
#> 3 3 0 0 1 0.967 0.598 1 35 …
# Data can not contain tibbles or matrices with incompatible number of rows:
try(tibble(a = 1:3, b = tibble(c = 4:7)))
#> Error in tibble(a = 1:3, b = tibble(c = 4:7)) :
#> Tibble columns must have compatible sizes.
#> • Size 3: Existing data.
#> • Size 4: Column `b`.
#> ℹ Only values of size one are recycled.
# Use := to create columns with names that start with a dot:
tibble(.dotted := 3)
#> # A tibble: 1 × 1
#> .dotted
#> <dbl>
#> 1 3
# This also works, but might break in the future:
tibble(.dotted = 3)
#> # A tibble: 1 × 1
#> .dotted
#> <dbl>
#> 1 3
# You can unquote an expression:
x <- 3
tibble(x = 1, y = x)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1
tibble(x = 1, y = !!x)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 3
# You can splice-unquote a list of quosures and expressions:
tibble(!!!list(x = rlang::quo(1:10), y = quote(x * 2)))
#> # A tibble: 10 × 2
#> x y
#> <int> <dbl>
#> 1 1 2
#> 2 2 4
#> 3 3 6
#> 4 4 8
#> 5 5 10
#> 6 6 12
#> 7 7 14
#> 8 8 16
#> 9 9 18
#> 10 10 20
# Use .data, .env and !! to refer explicitly to columns or outside objects
a <- 1
tibble(a = 2, b = a)
#> # A tibble: 1 × 2
#> a b
#> <dbl> <dbl>
#> 1 2 2
tibble(a = 2, b = .data$a)
#> # A tibble: 1 × 2
#> a b
#> <dbl> <dbl>
#> 1 2 2
tibble(a = 2, b = .env$a)
#> # A tibble: 1 × 2
#> a b
#> <dbl> <dbl>
#> 1 2 1
tibble(a = 2, b = !!a)
#> # A tibble: 1 × 2
#> a b
#> <dbl> <dbl>
#> 1 2 1
try(tibble(a = 2, b = .env$bogus))
#> Error : object 'bogus' not found
try(tibble(a = 2, b = !!bogus))
#> Error in eval(expr, envir) : object 'bogus' not found
# Use tibble_row() to construct a one-row tibble:
tibble_row(a = 1, lm = lm(Height ~ Girth + Volume, data = trees))
#> # A tibble: 1 × 2
#> a lm
#> <dbl> <list>
#> 1 1 <lm>