Skip to content

One of the main features of the tbl_df class is the printing:

  • Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary of the remaining rows and columns.

  • Tibble reveals the type of each column, which keeps the user informed about whether a variable is, e.g., <chr> or <fct> (character versus factor). See vignette("types") for an overview of common type abbreviations.

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments like n and width. More persistent control is available by setting the options described in pillar::pillar_options. See also vignette("digits") for a comparison to base options, and vignette("numbers") that showcases num() and char() for creating columns with custom formatting options.

As of tibble 3.1.0, printing is handled entirely by the pillar package. If you implement a package that extends tibble, the printed output can be customized in various ways. See vignette("extending", package = "pillar") for details, and pillar::pillar_options for options that control the display in the console.

Usage

# S3 method for class 'tbl_df'
print(
  x,
  width = NULL,
  ...,
  n = NULL,
  max_extra_cols = NULL,
  max_footer_lines = NULL
)

# S3 method for class 'tbl_df'
format(
  x,
  width = NULL,
  ...,
  n = NULL,
  max_extra_cols = NULL,
  max_footer_lines = NULL
)

Arguments

x

Object to format or print.

width

Width of text output to generate. This defaults to NULL, which means use the width option.

...

Passed on to pillar::tbl_format_setup().

n

Number of rows to show. If NULL, the default, will print all rows if less than the print_max option. Otherwise, will print as many rows as specified by the print_min option.

max_extra_cols

Number of extra columns to print abbreviated information for, if the width is too small for the entire tibble. If NULL, the max_extra_cols option is used. The previously defined n_extra argument is soft-deprecated.

Maximum number of footer lines. If NULL, the max_footer_lines option is used.

Examples

print(as_tibble(mtcars))
#> # A tibble: 32 × 11
#>      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#>  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
#>  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
#>  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
#>  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
#>  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#>  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#> 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> # ℹ 22 more rows
print(as_tibble(mtcars), n = 1)
#> # A tibble: 32 × 11
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1    21     6   160   110   3.9  2.62  16.5     0     1     4     4
#> # ℹ 31 more rows
print(as_tibble(mtcars), n = 3)
#> # A tibble: 32 × 11
#>     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  21       6   160   110  3.9   2.62  16.5     0     1     4     4
#> 2  21       6   160   110  3.9   2.88  17.0     0     1     4     4
#> 3  22.8     4   108    93  3.85  2.32  18.6     1     1     4     1
#> # ℹ 29 more rows

print(as_tibble(trees), n = 100)
#> # A tibble: 31 × 3
#>    Girth Height Volume
#>    <dbl>  <dbl>  <dbl>
#>  1   8.3     70   10.3
#>  2   8.6     65   10.3
#>  3   8.8     63   10.2
#>  4  10.5     72   16.4
#>  5  10.7     81   18.8
#>  6  10.8     83   19.7
#>  7  11       66   15.6
#>  8  11       75   18.2
#>  9  11.1     80   22.6
#> 10  11.2     75   19.9
#> 11  11.3     79   24.2
#> 12  11.4     76   21  
#> 13  11.4     76   21.4
#> 14  11.7     69   21.3
#> 15  12       75   19.1
#> 16  12.9     74   22.2
#> 17  12.9     85   33.8
#> 18  13.3     86   27.4
#> 19  13.7     71   25.7
#> 20  13.8     64   24.9
#> 21  14       78   34.5
#> 22  14.2     80   31.7
#> 23  14.5     74   36.3
#> 24  16       72   38.3
#> 25  16.3     77   42.6
#> 26  17.3     81   55.4
#> 27  17.5     82   55.7
#> 28  17.9     80   58.3
#> 29  18       80   51.5
#> 30  18       80   51  
#> 31  20.6     87   77  

print(mtcars, width = 10)
#>                      mpg
#> Mazda RX4           21.0
#> Mazda RX4 Wag       21.0
#> Datsun 710          22.8
#> Hornet 4 Drive      21.4
#> Hornet Sportabout   18.7
#> Valiant             18.1
#> Duster 360          14.3
#> Merc 240D           24.4
#> Merc 230            22.8
#> Merc 280            19.2
#> Merc 280C           17.8
#> Merc 450SE          16.4
#> Merc 450SL          17.3
#> Merc 450SLC         15.2
#> Cadillac Fleetwood  10.4
#> Lincoln Continental 10.4
#> Chrysler Imperial   14.7
#> Fiat 128            32.4
#> Honda Civic         30.4
#> Toyota Corolla      33.9
#> Toyota Corona       21.5
#> Dodge Challenger    15.5
#> AMC Javelin         15.2
#> Camaro Z28          13.3
#> Pontiac Firebird    19.2
#> Fiat X1-9           27.3
#> Porsche 914-2       26.0
#> Lotus Europa        30.4
#> Ford Pantera L      15.8
#> Ferrari Dino        19.7
#> Maserati Bora       15.0
#> Volvo 142E          21.4
#>                     cyl
#> Mazda RX4             6
#> Mazda RX4 Wag         6
#> Datsun 710            4
#> Hornet 4 Drive        6
#> Hornet Sportabout     8
#> Valiant               6
#> Duster 360            8
#> Merc 240D             4
#> Merc 230              4
#> Merc 280              6
#> Merc 280C             6
#> Merc 450SE            8
#> Merc 450SL            8
#> Merc 450SLC           8
#> Cadillac Fleetwood    8
#> Lincoln Continental   8
#> Chrysler Imperial     8
#> Fiat 128              4
#> Honda Civic           4
#> Toyota Corolla        4
#> Toyota Corona         4
#> Dodge Challenger      8
#> AMC Javelin           8
#> Camaro Z28            8
#> Pontiac Firebird      8
#> Fiat X1-9             4
#> Porsche 914-2         4
#> Lotus Europa          4
#> Ford Pantera L        8
#> Ferrari Dino          6
#> Maserati Bora         8
#> Volvo 142E            4
#>                      disp
#> Mazda RX4           160.0
#> Mazda RX4 Wag       160.0
#> Datsun 710          108.0
#> Hornet 4 Drive      258.0
#> Hornet Sportabout   360.0
#> Valiant             225.0
#> Duster 360          360.0
#> Merc 240D           146.7
#> Merc 230            140.8
#> Merc 280            167.6
#> Merc 280C           167.6
#> Merc 450SE          275.8
#> Merc 450SL          275.8
#> Merc 450SLC         275.8
#> Cadillac Fleetwood  472.0
#> Lincoln Continental 460.0
#> Chrysler Imperial   440.0
#> Fiat 128             78.7
#> Honda Civic          75.7
#> Toyota Corolla       71.1
#> Toyota Corona       120.1
#> Dodge Challenger    318.0
#> AMC Javelin         304.0
#> Camaro Z28          350.0
#> Pontiac Firebird    400.0
#> Fiat X1-9            79.0
#> Porsche 914-2       120.3
#> Lotus Europa         95.1
#> Ford Pantera L      351.0
#> Ferrari Dino        145.0
#> Maserati Bora       301.0
#> Volvo 142E          121.0
#>                      hp
#> Mazda RX4           110
#> Mazda RX4 Wag       110
#> Datsun 710           93
#> Hornet 4 Drive      110
#> Hornet Sportabout   175
#> Valiant             105
#> Duster 360          245
#> Merc 240D            62
#> Merc 230             95
#> Merc 280            123
#> Merc 280C           123
#> Merc 450SE          180
#> Merc 450SL          180
#> Merc 450SLC         180
#> Cadillac Fleetwood  205
#> Lincoln Continental 215
#> Chrysler Imperial   230
#> Fiat 128             66
#> Honda Civic          52
#> Toyota Corolla       65
#> Toyota Corona        97
#> Dodge Challenger    150
#> AMC Javelin         150
#> Camaro Z28          245
#> Pontiac Firebird    175
#> Fiat X1-9            66
#> Porsche 914-2        91
#> Lotus Europa        113
#> Ford Pantera L      264
#> Ferrari Dino        175
#> Maserati Bora       335
#> Volvo 142E          109
#>                     drat
#> Mazda RX4           3.90
#> Mazda RX4 Wag       3.90
#> Datsun 710          3.85
#> Hornet 4 Drive      3.08
#> Hornet Sportabout   3.15
#> Valiant             2.76
#> Duster 360          3.21
#> Merc 240D           3.69
#> Merc 230            3.92
#> Merc 280            3.92
#> Merc 280C           3.92
#> Merc 450SE          3.07
#> Merc 450SL          3.07
#> Merc 450SLC         3.07
#> Cadillac Fleetwood  2.93
#> Lincoln Continental 3.00
#> Chrysler Imperial   3.23
#> Fiat 128            4.08
#> Honda Civic         4.93
#> Toyota Corolla      4.22
#> Toyota Corona       3.70
#> Dodge Challenger    2.76
#> AMC Javelin         3.15
#> Camaro Z28          3.73
#> Pontiac Firebird    3.08
#> Fiat X1-9           4.08
#> Porsche 914-2       4.43
#> Lotus Europa        3.77
#> Ford Pantera L      4.22
#> Ferrari Dino        3.62
#> Maserati Bora       3.54
#> Volvo 142E          4.11
#>                        wt
#> Mazda RX4           2.620
#> Mazda RX4 Wag       2.875
#> Datsun 710          2.320
#> Hornet 4 Drive      3.215
#> Hornet Sportabout   3.440
#> Valiant             3.460
#> Duster 360          3.570
#> Merc 240D           3.190
#> Merc 230            3.150
#> Merc 280            3.440
#> Merc 280C           3.440
#> Merc 450SE          4.070
#> Merc 450SL          3.730
#> Merc 450SLC         3.780
#> Cadillac Fleetwood  5.250
#> Lincoln Continental 5.424
#> Chrysler Imperial   5.345
#> Fiat 128            2.200
#> Honda Civic         1.615
#> Toyota Corolla      1.835
#> Toyota Corona       2.465
#> Dodge Challenger    3.520
#> AMC Javelin         3.435
#> Camaro Z28          3.840
#> Pontiac Firebird    3.845
#> Fiat X1-9           1.935
#> Porsche 914-2       2.140
#> Lotus Europa        1.513
#> Ford Pantera L      3.170
#> Ferrari Dino        2.770
#> Maserati Bora       3.570
#> Volvo 142E          2.780
#>                      qsec
#> Mazda RX4           16.46
#> Mazda RX4 Wag       17.02
#> Datsun 710          18.61
#> Hornet 4 Drive      19.44
#> Hornet Sportabout   17.02
#> Valiant             20.22
#> Duster 360          15.84
#> Merc 240D           20.00
#> Merc 230            22.90
#> Merc 280            18.30
#> Merc 280C           18.90
#> Merc 450SE          17.40
#> Merc 450SL          17.60
#> Merc 450SLC         18.00
#> Cadillac Fleetwood  17.98
#> Lincoln Continental 17.82
#> Chrysler Imperial   17.42
#> Fiat 128            19.47
#> Honda Civic         18.52
#> Toyota Corolla      19.90
#> Toyota Corona       20.01
#> Dodge Challenger    16.87
#> AMC Javelin         17.30
#> Camaro Z28          15.41
#> Pontiac Firebird    17.05
#> Fiat X1-9           18.90
#> Porsche 914-2       16.70
#> Lotus Europa        16.90
#> Ford Pantera L      14.50
#> Ferrari Dino        15.50
#> Maserati Bora       14.60
#> Volvo 142E          18.60
#>                     vs
#> Mazda RX4            0
#> Mazda RX4 Wag        0
#> Datsun 710           1
#> Hornet 4 Drive       1
#> Hornet Sportabout    0
#> Valiant              1
#> Duster 360           0
#> Merc 240D            1
#> Merc 230             1
#> Merc 280             1
#> Merc 280C            1
#> Merc 450SE           0
#> Merc 450SL           0
#> Merc 450SLC          0
#> Cadillac Fleetwood   0
#> Lincoln Continental  0
#> Chrysler Imperial    0
#> Fiat 128             1
#> Honda Civic          1
#> Toyota Corolla       1
#> Toyota Corona        1
#> Dodge Challenger     0
#> AMC Javelin          0
#> Camaro Z28           0
#> Pontiac Firebird     0
#> Fiat X1-9            1
#> Porsche 914-2        0
#> Lotus Europa         1
#> Ford Pantera L       0
#> Ferrari Dino         0
#> Maserati Bora        0
#> Volvo 142E           1
#>                     am
#> Mazda RX4            1
#> Mazda RX4 Wag        1
#> Datsun 710           1
#> Hornet 4 Drive       0
#> Hornet Sportabout    0
#> Valiant              0
#> Duster 360           0
#> Merc 240D            0
#> Merc 230             0
#> Merc 280             0
#> Merc 280C            0
#> Merc 450SE           0
#> Merc 450SL           0
#> Merc 450SLC          0
#> Cadillac Fleetwood   0
#> Lincoln Continental  0
#> Chrysler Imperial    0
#> Fiat 128             1
#> Honda Civic          1
#> Toyota Corolla       1
#> Toyota Corona        0
#> Dodge Challenger     0
#> AMC Javelin          0
#> Camaro Z28           0
#> Pontiac Firebird     0
#> Fiat X1-9            1
#> Porsche 914-2        1
#> Lotus Europa         1
#> Ford Pantera L       1
#> Ferrari Dino         1
#> Maserati Bora        1
#> Volvo 142E           1
#>                     gear
#> Mazda RX4              4
#> Mazda RX4 Wag          4
#> Datsun 710             4
#> Hornet 4 Drive         3
#> Hornet Sportabout      3
#> Valiant                3
#> Duster 360             3
#> Merc 240D              4
#> Merc 230               4
#> Merc 280               4
#> Merc 280C              4
#> Merc 450SE             3
#> Merc 450SL             3
#> Merc 450SLC            3
#> Cadillac Fleetwood     3
#> Lincoln Continental    3
#> Chrysler Imperial      3
#> Fiat 128               4
#> Honda Civic            4
#> Toyota Corolla         4
#> Toyota Corona          3
#> Dodge Challenger       3
#> AMC Javelin            3
#> Camaro Z28             3
#> Pontiac Firebird       3
#> Fiat X1-9              4
#> Porsche 914-2          5
#> Lotus Europa           5
#> Ford Pantera L         5
#> Ferrari Dino           5
#> Maserati Bora          5
#> Volvo 142E             4
#>                     carb
#> Mazda RX4              4
#> Mazda RX4 Wag          4
#> Datsun 710             1
#> Hornet 4 Drive         1
#> Hornet Sportabout      2
#> Valiant                1
#> Duster 360             4
#> Merc 240D              2
#> Merc 230               2
#> Merc 280               4
#> Merc 280C              4
#> Merc 450SE             3
#> Merc 450SL             3
#> Merc 450SLC            3
#> Cadillac Fleetwood     4
#> Lincoln Continental    4
#> Chrysler Imperial      4
#> Fiat 128               1
#> Honda Civic            2
#> Toyota Corolla         1
#> Toyota Corona          1
#> Dodge Challenger       2
#> AMC Javelin            2
#> Camaro Z28             4
#> Pontiac Firebird       2
#> Fiat X1-9              1
#> Porsche 914-2          2
#> Lotus Europa           2
#> Ford Pantera L         4
#> Ferrari Dino           6
#> Maserati Bora          8
#> Volvo 142E             2

mtcars2 <- as_tibble(cbind(mtcars, mtcars), .name_repair = "unique")
#> New names:
#>  `mpg` -> `mpg...1`
#>  `cyl` -> `cyl...2`
#>  `disp` -> `disp...3`
#>  `hp` -> `hp...4`
#>  `drat` -> `drat...5`
#>  `wt` -> `wt...6`
#>  `qsec` -> `qsec...7`
#>  `vs` -> `vs...8`
#>  `am` -> `am...9`
#>  `gear` -> `gear...10`
#>  `carb` -> `carb...11`
#>  `mpg` -> `mpg...12`
#>  `cyl` -> `cyl...13`
#>  `disp` -> `disp...14`
#>  `hp` -> `hp...15`
#>  `drat` -> `drat...16`
#>  `wt` -> `wt...17`
#>  `qsec` -> `qsec...18`
#>  `vs` -> `vs...19`
#>  `am` -> `am...20`
#>  `gear` -> `gear...21`
#>  `carb` -> `carb...22`
print(mtcars2, n = 25, max_extra_cols = 3)
#> # A tibble: 32 × 22
#>    mpg...1 cyl...2 disp...3 hp...4 drat...5 wt...6 qsec...7 vs...8 am...9
#>      <dbl>   <dbl>    <dbl>  <dbl>    <dbl>  <dbl>    <dbl>  <dbl>  <dbl>
#>  1    21         6    160      110     3.9    2.62     16.5      0      1
#>  2    21         6    160      110     3.9    2.88     17.0      0      1
#>  3    22.8       4    108       93     3.85   2.32     18.6      1      1
#>  4    21.4       6    258      110     3.08   3.22     19.4      1      0
#>  5    18.7       8    360      175     3.15   3.44     17.0      0      0
#>  6    18.1       6    225      105     2.76   3.46     20.2      1      0
#>  7    14.3       8    360      245     3.21   3.57     15.8      0      0
#>  8    24.4       4    147.      62     3.69   3.19     20        1      0
#>  9    22.8       4    141.      95     3.92   3.15     22.9      1      0
#> 10    19.2       6    168.     123     3.92   3.44     18.3      1      0
#> 11    17.8       6    168.     123     3.92   3.44     18.9      1      0
#> 12    16.4       8    276.     180     3.07   4.07     17.4      0      0
#> 13    17.3       8    276.     180     3.07   3.73     17.6      0      0
#> 14    15.2       8    276.     180     3.07   3.78     18        0      0
#> 15    10.4       8    472      205     2.93   5.25     18.0      0      0
#> 16    10.4       8    460      215     3      5.42     17.8      0      0
#> 17    14.7       8    440      230     3.23   5.34     17.4      0      0
#> 18    32.4       4     78.7     66     4.08   2.2      19.5      1      1
#> 19    30.4       4     75.7     52     4.93   1.62     18.5      1      1
#> 20    33.9       4     71.1     65     4.22   1.84     19.9      1      1
#> 21    21.5       4    120.      97     3.7    2.46     20.0      1      0
#> 22    15.5       8    318      150     2.76   3.52     16.9      0      0
#> 23    15.2       8    304      150     3.15   3.44     17.3      0      0
#> 24    13.3       8    350      245     3.73   3.84     15.4      0      0
#> 25    19.2       8    400      175     3.08   3.84     17.0      0      0
#> # ℹ 7 more rows
#> # ℹ 13 more variables: gear...10 <dbl>, carb...11 <dbl>, mpg...12 <dbl>,
#> #   …

print(nycflights13::flights, max_footer_lines = 1)
#> # A tibble: 336,776 × 19
#>     year month   day dep_time sched_dep_time dep_delay arr_time
#>    <int> <int> <int>    <int>          <int>     <dbl>    <int>
#>  1  2013     1     1      517            515         2      830
#>  2  2013     1     1      533            529         4      850
#>  3  2013     1     1      542            540         2      923
#>  4  2013     1     1      544            545        -1     1004
#>  5  2013     1     1      554            600        -6      812
#>  6  2013     1     1      554            558        -4      740
#>  7  2013     1     1      555            600        -5      913
#>  8  2013     1     1      557            600        -3      709
#>  9  2013     1     1      557            600        -3      838
#> 10  2013     1     1      558            600        -2      753
#> # ℹ 336,766 more rows
print(nycflights13::flights, width = Inf)
#> # A tibble: 336,776 × 19
#>     year month   day dep_time sched_dep_time dep_delay arr_time
#>    <int> <int> <int>    <int>          <int>     <dbl>    <int>
#>  1  2013     1     1      517            515         2      830
#>  2  2013     1     1      533            529         4      850
#>  3  2013     1     1      542            540         2      923
#>  4  2013     1     1      544            545        -1     1004
#>  5  2013     1     1      554            600        -6      812
#>  6  2013     1     1      554            558        -4      740
#>  7  2013     1     1      555            600        -5      913
#>  8  2013     1     1      557            600        -3      709
#>  9  2013     1     1      557            600        -3      838
#> 10  2013     1     1      558            600        -2      753
#>    sched_arr_time arr_delay carrier flight tailnum origin dest  air_time
#>             <int>     <dbl> <chr>    <int> <chr>   <chr>  <chr>    <dbl>
#>  1            819        11 UA        1545 N14228  EWR    IAH        227
#>  2            830        20 UA        1714 N24211  LGA    IAH        227
#>  3            850        33 AA        1141 N619AA  JFK    MIA        160
#>  4           1022       -18 B6         725 N804JB  JFK    BQN        183
#>  5            837       -25 DL         461 N668DN  LGA    ATL        116
#>  6            728        12 UA        1696 N39463  EWR    ORD        150
#>  7            854        19 B6         507 N516JB  EWR    FLL        158
#>  8            723       -14 EV        5708 N829AS  LGA    IAD         53
#>  9            846        -8 B6          79 N593JB  JFK    MCO        140
#> 10            745         8 AA         301 N3ALAA  LGA    ORD        138
#>    distance  hour minute time_hour          
#>       <dbl> <dbl>  <dbl> <dttm>             
#>  1     1400     5     15 2013-01-01 05:00:00
#>  2     1416     5     29 2013-01-01 05:00:00
#>  3     1089     5     40 2013-01-01 05:00:00
#>  4     1576     5     45 2013-01-01 05:00:00
#>  5      762     6      0 2013-01-01 06:00:00
#>  6      719     5     58 2013-01-01 05:00:00
#>  7     1065     6      0 2013-01-01 06:00:00
#>  8      229     6      0 2013-01-01 06:00:00
#>  9      944     6      0 2013-01-01 06:00:00
#> 10      733     6      0 2013-01-01 06:00:00
#> # ℹ 336,766 more rows